debeleer.com >>> chapter1.us
La dirección de nuestro sitio web ha cambiado. A pesar de los problemas que estamos viviendo, estamos aquí para ti. Puedes ser un socio en nuestra lucha apoyándonos.
Donar Ahora | Paypal


Como Puedo Descargar Libros Gratis Pdf?


Paradojas y Fundamentos de las Matemáticas – Juan Eduardo Nápoles Valdés

Una paradoja ha sido descrita como una verdad ubicada en la cabeza para llamar la atención. Por supuesto que ellas nos preocupan, divierten, exasperan y seducen. Más importante aún, despiertan curiosidad, la estimulan y la motivan. Usamos el término paradoja en un amplio sentido para significar una inconsistencia, un contraejemplo como ayuda para clarificar nociones, una idea falsa, un planteamiento verdadero que parece ser falso. Existen varias formas en que las paradojas han desempeñado un papel importante en la evolución de las Matemáticas. Su resolución ha exigido abandonar armazones conceptuales existentes y ha estimulado a menudo el nacimiento de ideas matemáticas importantes. Desde Zenón de Elea hasta Albert Einstein, la matemática, y la ciencia en general, ha estado y está repleta de estas paradojas, que a veces no son tales y otras nos abren la mente a nuevas ideas y conocimientos.


 

Para apreciar nuestra propia Edad de Oro de la Matemática debemos tener en cuenta algunas de las grandes y sencillas directrices de aquéllos cuyo genio preparó hace largo tiempo el camino para nosotros, y debemos lanzar una ojeada a las vidas y obras de tres griegos: Zenón (495-435 a. C.), Eudoxio (408- 355 a. C.) y Arquímedes (287-212 a. C.). Euclides será mencionado más tarde, donde encuadra mejor su obra. Zenón y Eudoxio son representantes de dos vigorosas y opuestas escuelas de pensamiento matemático que florecen en la actualidad, la crítica destructiva y la crítica constructiva. La mente de ambos poseía un espíritu crítico tan penetrante como la de sus sucesores de los siglos XIX y XX. Este juicio puede, como es natural, invertirse: Kronecker (1823-1891) y Brouwer (1881-1966), los críticos modernos del Análisis Matemático, las teorías del infinito y del continuo, son tan antiguas como Zenón; los creadores de las teorías modernas de la continuidad y el infinito, Weierstrass (1815-1897), Dedekind (1831-1916) y Cantor (1845-1918) son contemporáneos intelectuales de Eudoxio. Arquímedes, la inteligencia más grande de la antigüedad, es moderno hasta el tuétano. Él y Newton podían haberse comprendido perfectamente, y es muy posible que Arquímedes, si hubiera podido vivir hasta seguir un curso de postgraduado en Matemática y Física, hubiera comprendido a Einstein, Bohr, Heisenberg y Dirac mejor que éstos se han comprendido entre sí. De todos los antiguos, Arquímedes es el único cuyo pensamiento gozó de la libertad que los matemáticos más grandes se permiten actualmente después que 25 siglos han alisado su camino. Arquímedes es el único entre los griegos que tuvo la suficiente altura y vigor para ver claro a través de los obstáculos colocados en la senda del progreso matemático por los aterrorizados geómetras que habían escuchado a los filósofos. Cualquier enumeración de los tres matemáticos más grandes de la historia, incluiría el nombre de Arquímedes. Los otros dos que de ordinario se asocian a él son Newton (1642-1727) y Gauss (1777-1855). Quienes consideran la relativa pobreza de la ciencia matemática y física en las respectivas edades en que estos gigantes vivieron y comparen sus conquistas con el carácter de sus tiempos colocarían a Arquímedes en el primer lugar.


Si los matemáticos y hombres de ciencia griegos hubieran seguido a Arquímedes en vez de a Euclides, Platón y Aristóteles, seguramente habrían anticipado en dos millares de años la edad de la Matemática moderna, que comenzó con Descartes (1596-1650) y Newton en el siglo XVII, y la edad de la ciencia física moderna, inaugurada por Galileo (1564- 1642) en el mismo siglo. Tras estos tres precursores de la época moderna se alza la figura semimística de Pitágoras (569?-500? a. C.), matemático místico, investigador de la naturaleza, « una décima de genio y nueve décimas de aguda mentira» como se ha afirmado en ocasiones. Su vida tiene algo de fábula, rica con el increíble aumento de sus prodigios, siendo el hecho más importante para el desarrollo de la Matemática el haberla distinguido del extraño misticismo de los números con que revistió sus especulaciones cósmicas. Viajó por Egipto, aprendió mucho de sus sacerdotes, visitó Babilonia y repitió sus experiencias de Egipto; fundó una secreta hermandad para el alto pensamiento matemático y las especulaciones físicas, mentales, morales y éticas, en Cretona, en el sur de Italia, y además realizó dos de las más grandes contribuciones a la Matemática. Según la leyenda, murió en las llamas de su propia escuela quemada por los fanáticos políticos y religiosos que azuzaron a las masas para protestar contra la instrucción que Pitágoras pensaba darles. Sic transit gloria mundi. Antes de Pitágoras, nadie, se había dado clara cuenta de que la prueba debe proceder de las suposiciones. De acuerdo con la tradición, Pitágoras fue el primer europeo que insistió en que los axiomas, los postulados, deben establecerse al principio, en el desarrollo de la Geometría, y que todo el desarrollo descansa en las aplicaciones del razonamiento deductivo partiendo de los axiomas. Siguiendo la práctica corriente emplearemos la palabra « postulado» en lugar de « axioma» , pues el axioma tiene una perniciosa asociación histórica de « verdad evidente por sí misma» , que no tiene el postulado. El postulado es una arbitraria suposición establecida por el matemático mismo y no por Dios Todopoderoso. Pitágoras estableció, pues, la prueba en la Matemática. Ésta es una conquista. Antes de él, la Geometría había sido una colección de reglas a las que se había llegado empíricamente, sin una clara indicación de que estuvieran relacionadas entre sí y sin la más leve sospecha que pudieran deducirse de un número relativamente pequeño de postulados. La prueba constituy e hoy el verdadero espíritu de la Matemática y nos parece difícil imaginar cómo pudo prescindir de ella el razonamiento matemático. La segunda contribución matemática sobresaliente de Pitágoras es el descubrimiento, que le humilló y desoló, de que los números naturales comunes 1, 2, 3,… son insuficientes para la construcción de la Matemática, hasta en la forma rudimentaria en que él la conocía. Ante este capital descubrimiento predicó, como un profeta, que toda la naturaleza, el Universo entero, físicometafísico, mental, moral, matemático, todas las cosas están construidas según la norma discontinua de los números naturales 1, 2, 3,… y sólo es interpretable en función de estos ladrillos proporcionados por Dios. Dios, declaraba Pitágoras, es en efecto « número» , y por número quería referirse al número natural común. Sin duda se trata de una sublime concesión, bella y simple, pero tan inabordable como su eco en Platón: « Hasta Dios geometriza» , o en Jacobi: « Hasta Dios aritmetiza» , o en Jeans: « El gran Arquitecto del Universo comienza ahora a aparecer como un matemático» . Una obstinada discrepancia matemática demolió la filosofía, la matemática y la metafísica de Pitágoras. Pero, a diferencia de algunos de sus sucesores, aceptó finalmente la derrota después de haber luchado en vano para anular el descubrimiento que había abolido su credo. He aquí lo que había derrumbado su teoría: es imposible encontrar dos números enteros tales que el cuadrado de uno de ellos sea igual al doble del cuadrado del otro. Esto puede ser probado por un simple razonamiento que está al alcance de cualquiera que haya estudiado unas pocas semanas de Álgebra, o hasta por cualquiera que comprenda la Aritmética elemental. En realidad Pitágoras encontró su tropiezo en Geometría: la razón entre el lado de un cuadrado y una de sus diagonales no puede ser expresada como razón de dos números enteros cualesquiera.

Este juicio es equivalente al anterior referente a los cuadrados de los números enteros. En otra forma podemos decir que la raíz cuadrada de 2 es irracional, [5] o sea, no es igual a un número entero o fracción decimal exacta o suma de los dos, obtenida dividiendo un número entero por otro; un concepto geométrico tan simple como el de la diagonal de un cuadrado desafía a los números naturales 1, 2, 3,… y niega la primitiva filosofía pitagórica. Podemos construir fácilmente la diagonal geométrica, pero no podemos medirla con un número finito de pasos. Esta imposibilidad da lugar claramente a los números irracionales y a los procesos infinitos que atraen la atención de los matemáticos. Así, la raíz cuadrada de 2 puede ser calculada con cualquier número finito dado de cifras decimales por el proceso enseñado en la escuela o por métodos más importantes, pero las cifras decimales jamás « se repiten periódicamente» (como por ejemplo ocurre para 1/7). En este descubrimiento Pitágoras encontró el fundamento del moderno Análisis Matemático. Los resultados obtenidos por este simple problema no fueron admitidos de un modo satisfactorio por todos los matemáticos. Nos referimos a los conceptos matemáticos del infinito (lo innumerable), límites y continuidad, conceptos que están en la raíz del Análisis moderno. Tiempo tras tiempo las paradojas y sofismas que se deslizan en la Matemática con estos conceptos al parecer indispensables han sido considerados y finalmente eliminados, y sólo reaparecen una generación o dos más tarde, cambiados aunque siempre los mismos. Los encontramos más vivos que nunca en la Matemática de nuestro tiempo. Los razonamientos siguientes constituyen una descripción extraordinariamente simple e intuitiva de la situación. Consideremos una línea recta de diez centímetros de largo y supongamos que ha sido trazada por el « movimiento» « continuo» de un « punto» . Las palabras entre comillas son las que ocultan las dificultades. Sin analizarlas podemos fácilmente persuadirnos de que describimos lo que ellas significan. Ahora escribamos en el extremo izquierdo de la línea la cifra 0 y en el extremo derecho el número 2. A mitad del camino entre 0 y 2 escribiremos 1; a la mitad entre 0 y 1 escribiremos 1/2; a la mitad entre 0 y 1/2 escribiremos 1/4, y así sucesivamente. De modo análogo entre 1 y 2 escribiremos 1 1/2 y entre 1 1/2 y 2, 1 1/4, y así sucesivamente. Una vez hecho esto procederemos del mismo modo y escribiremos 1/3, 2/3, 1 1/3, 1 2/3, y entonces descompondremos cada uno de los segmentos resultantes en segmentos iguales más pequeños. Finalmente « en la imaginación» podemos concebir que este proceso se realiza para todas las fracciones comunes y números mixtos comunes que son may ores que 0 y menores que 2; los puntos de división conceptual nos dan todos los números racionales entre 0 y 2. Se trata de un número infinito de puntos. ¿Llegarán a « cubrir» completamente la línea? No. ¿A qué punto corresponde la raíz cuadrada de 2? A ningún punto, pues esta raíz cuadrada no se obtiene dividiendo un número cualquiera entero por otro. Pero la raíz cuadrada de 2 es sin duda un « número» de algún tipo; su punto representativo se encuentra entre 1,41 y 1,42 y nosotros podemos colocarlo tan aproximado como nos plazca. Para cubrir la línea completamente con puntos nos veremos forzados a imaginar o a inventar infinitamente más « números» que los racionales. Es decir, aceptamos que la línea es continua, y postulamos que cada punto de ella corresponde a un y solamente a un « número real» .

El mismo tipo de suposición puede ser llevado a todo un plano y aún más allá, pero esto basta por el momento. [6] Problemas tan sencillos como éstos pueden conducir a serias dificultades. Con respecto a estas dificultades, los griegos estaban divididos, como nosotros lo estamos, en dos grupos irreconciliables. Uno se detenía en su ruta matemática y rechazaba marchar hacia el Análisis: el Cálculo Integral en el cual nosotros nos detendremos aunque sea brevemente; el otro intentaba vencer las dificultades y conseguía convencerse a sí mismo de que así lo hacía. Aquellos que se detenían, aunque cometían pocos fracasos, eran comparativamente estériles para la verdad no menos que para el error; aquellos que necesitaban descubrir muchas cosas del más alto interés para la Matemática y el pensamiento racional en general, dejaban algunas veces abierta la crítica destructiva, precisamente como ha sucedido en nuestra propia generación. Desde los primitivos tiempos nos encontramos con estos dos tipos mentales diferentes y antagónicos: los cautelosos que justifican quedarse atrás debido a que la tierra tiembla bajo sus pies, y los más audaces precursores que saltan el abismo para encontrar tesoros y seguridad relativa en el otro lado. Estudiaremos primeramente algunos de aquellos que se negaban a saltar. Para hallar un pensamiento tan penetrante y sutil que lo iguale tenemos que llegar hasta el siglo XX y encontrar a Brouwer. Zenón de Elea fue un filósofo griego nacido en Elea, perteneciente a la escuela eleática (c. 490- 430 a. C.). Fue discípulo directo de Parménides de Elea y se le recuerda por el amplio arsenal conceptual con que defendió las tesis de su maestro. 2 LAS PARADOJAS DE ZENÓN Zenón de Elea, [7] actualmente Velia en Lucania, Italia Meridional (ver Mapa 1), amigo del filósofo Parménides, cuando visitó Atenas con su protector dejó sorprendidos a los filósofos inventando cuatro inocentes paradojas que no podían resolver con palabras. Se dice que Zenón fue un campesino autodidacto. Sin intentar resolver cuál fue su propósito al inventar sus paradojas, se han mantenido opiniones diferentes que nos limitaremos a mencionarlas. Teniéndolas presentes resulta evidente que Zenón, hubiera podido objetar nuestra división « infinitamente continuada» de la línea de diez centímetros, descrita antes. Así se deduce de las dos primeras de sus paradojas. La Dicotomía y el argumento Aquiles y la Tortuga. Las dos últimas, sin embargo, muestran que hubiera podido objetar con la misma vehemencia la hipótesis opuesta, la de que la línea no es « divisible infinitamente» y que se compone de una serie separada de puntos que pueden ser numerados 1, 2, 3,… Las cuatro en su conjunto constituyen un círculo de hierro más allá del cual el progreso parece imposible. Primero, la Dicotomía. El movimiento es imposible, debido a que siempre que se mueve debe alcanzar la mitad de su curso antes de que alcance el final; pero antes de haber alcanzado la mitad debe haber alcanzado la cuarta parte y así sucesivamente de modo indefinido. De aquí que el movimiento nunca pueda iniciarse. Segundo, el argumento Aquiles. Aquiles corriendo tras una tortuga que se halla delante de él jamás puede alcanzarla, pues primero debe llegar al lugar desde el cual la tortuga ha partido; cuando Aquiles llega a ese sitio la tortuga ya no está allí y siempre marcha adelante.

Repitiendo el argumento podemos fácilmente ver que la tortuga siempre estará delante. [8] Ahora examinemos las opuestas. Tercera, la flecha. Una flecha que se mueve en un instante dado está en reposo o no está en reposo, es decir, se mueve. Si el instante es indivisible, la flecha no puede moverse, pues si lo hace el instante quedaría dividido inmediatamente. Pero el tiempo está constituido de instantes. Como la flecha no puede moverse en ningún instante, no podrá en ningún momento. De aquí que siempre permanecerá en reposo. Cuarta, el Stadium. « Para demostrar que la mitad del tiempo puede ser igual al doble del tiempo consideraremos tres filas de cuerpos una de las cuales, (A) está en reposo, mientras que las otras dos, (B) y (C), se mueven con igual velocidad en sentidos opuestos. En el momento en que todas están en la misma parte del curso, (B) habrá sobrepasado doble números de cuerpos en (C) que en (A) Por lo tanto el tiempo que ha empleado para pasar (A) es doble que el tiempo que ha empleado para pasar (C) Pero el tiempo que (B) y (C) han empleado para alcanzar la posición (A) es el mismo. Por tanto el doble del tiempo es igual a la mitad del tiempo» (traducción de Burnet). Es útil imaginar (A) como una valla de estacas. Primera posición (A) 0 0 0 0 (B) 0 0 0 0 (C) 0 0 0 0 Segunda posición (A) 0 0 0 0 (B) 0 0 0 0 (C) 0 0 0 0 Éstas son, en lenguaje no matemático, la serie de dificultades que encontraron los primeros que se ocuparon de la continuidad y el infinito. En los libros escritos hace 30 años se dice que « la teoría positiva del infinito» creada por Cantor, y la teoría de los números « irracionales» , como la raíz cuadrada de 2, inventada por Eudoxio, Weierstrass y Dedekind, han disipado todas estas dificultades para siempre. Esa afirmación no podía ser aceptada por todas las escuelas del pensamiento matemático. Así, al detenernos en Zenón nos hemos, en efecto, discutido a nosotros mismos. Quienes deseen saber algo más respecto a esos problemas pueden consultar el Parménides de Platón. Necesitamos tan sólo hacer notar que Zenón finalmente perdió su cabeza por traición o algún acto semejante. Poco es lo que relativamente hicieron para el progreso de la Matemática los sucesores de Zenón, aunque al menos intentaron hacer temblar sus fundamentos. Eudoxio (408-355 a. C.), de Cnidos, heredó el legado que hizo Zenón al mundo y no mucho más. Como muchos de los hombres que se han dedicado a la Matemática, Eudoxio sufrió de extrema pobreza en su juventud. Platón estaba en sus años mozos cuando vivía Eudoxio y Aristóteles tenía alrededor de los 30 años cuándo Eudoxio murió.

Tanto Platón como Aristóteles, los filósofos principales de la antigüedad, estaban influidos por las dudas que Zenón había inyectado en el razonamiento matemático y que Eudoxio, en su teoría de las proporciones —« la corona de la Matemática griega» —, suavizó hasta la última cuarta parte del siglo XIX. Siendo joven, Eudoxio se trasladó a Atenas desde Tarento, donde había estudiado con Archytas (428-347 a. C.), un excelente matemático, administrador y soldado. Llegado a Atenas, Eudoxio pronto encontró a Platón. Como era demasiado pobre para vivir cerca de la academia, Eudoxio venía desde el Pireo, donde el pescado, el aceite de oliva y el alojamiento eran baratos. Aunque Platón no era un matemático en el sentido técnico, fue llamado « el hacedor de la Matemática» y no puede negarse que cuando estaba irritado hacía Matemáticas infinitamente mejores que cuando quería crear verdaderas Matemáticas. Como veremos, su notable influencia para el desarrollo de la Matemática fue probablemente perniciosa. Pero rápidamente reconoció lo que era Eudoxio y fue su amigo devoto hasta que comenzó a sentir celos por su brillante protegido. Se dice que Platón y Eudoxio hicieron juntos un viaje a Egipto. De ser así, parece que Eudoxio fue menos crédulo que su predecesor Pitágoras. Platón, sin embargo, muestra los efectos de haber incorporado buena parte del misticismo de los números, propio del Oriente. La Academia fundada por Platón tuvo una muy marcada influencia en la cultura helénica. Aunque Eudoxio aceptó el principio platónico de la perfección, y con ello las órbitas planetarias circulares, no pudo menos que darse cuenta de que las trayectorias observadas no concordaban con esas curvas perfectas. En el modelo de Eudoxio, el movimiento de los cuerpos celestes se representaba mediante un conjunto de esferas: la correspondiente a un planeta tenía sus polos sobre otra esfera, que a su vez descansaba sobre otra de ellas y así sucesivamente. El astrónomo griego pensaba en 27 esferas, pues cada planeta requería de cuatro de ellas. Así explicaba las posiciones aparentes de los astros, aunque no los cambios de brillantez de los planetas, que interpretaba correctamente como producidos por sus diferentes distancias de la Tierra. Encontrándose poco popular en Atenas, Eudoxio se estableció y enseñó en Cy cico, donde transcurrieron sus últimos años. Estudió medicina y se dice que fue un médico práctico y un legislador por encima de su Matemática. Como si todo esto no fuera suficiente, realizó un serio estudio de Astronomía, a la cual enriqueció con notables contribuciones. En su construcción científica se encontraba varios siglos adelante de sus verbalizantes y filosofantes contemporáneos. Como Galileo y Newton, tenía un gran desprecio por las especulaciones acerca del Universo físico que no podían ser comprobadas por la observación y la experiencia. Si marchando hasta el Sol, decía, pudiera decirse cuál es su forma, tamaño y naturaleza, podría correrse gustosamente el destino de Faetón, pero mientras tanto no hay necesidad de establecer conjeturas. Alguna idea de lo que Eudoxio hizo puede obtenerse partiendo de un sencillo problema. Para encontrar el área de un rectángulo multiplicamos el largo por el ancho.

Aunque esto nos parece fácil presenta graves dificultades, a no ser que ambos lados sean medibles por números racionales. Pasando por alto esta particular dificultad, la vemos en una forma más evidente en el siguiente tipo más sencillo de problema, el de hallar la longitud de una línea curva, o el área de una superficie curva, o el volumen encerrado por superficies curvas. Quien desee comprobar su capacidad matemática, debe intentar descubrir un método para demostrar estas cosas. Supuesto que jamás lo hay a visto hacer en la escuela, ¿cómo procederá para dar una prueba rigurosa de la fórmula de la longitud de una circunferencia que tenga un determinado radio? Siempre que por su propia iniciativa lo haga, puede pretender ser considerado como un matemático de primera categoría. En el momento en que se pasa de las figuras limitadas por líneas rectas o superficies planas caemos en los problemas de la continuidad, los enigmas del infinito y los laberintos de los números irracionales. Eudoxio ideó el primer método lógicamente satisfactorio que Euclides reprodujo en el Libro V de sus Elementos. En su método de exhaución aplicado al cálculo de áreas y volúmenes, Eudoxio demostró que no necesitamos aceptar la « existencia» de « cantidades infinitamente pequeñas» . Para los fines de un matemático es suficiente poder llegar a una cantidad tan pequeña como queramos por la división continuada de una cierta cantidad. Para terminar cuanto se refiere a Eudoxio mencionaremos su definición, que marca una época, de las razones iguales que capacitan a los matemáticos para tratar los números irracionales tan rigurosamente como los racionales. Éste fue esencialmente el punto de partida de la moderna teoría de los irracionales. Se dice que la primera de cuatro cantidades tiene la misma razón respecto de la segunda como tiene la tercera respecto de la cuarta, cuando, siempre que consideremos equimúltiples (iguales múltiplos) de la primera y la tercera, y cualquier otro equimúltiplo de la segunda y cuarta, el múltiplo de la primera es may or, igual a, o menor que el múltiplo de la segunda, cuando el múltiplo de la tercera es may or, igual, o menor que el múltiplo de la cuarta.

.

Declaración Obligatoria: Como sabe, hacemos todo lo posible para compartir un archivo de decenas de miles de libros con usted de forma gratuita. Sin embargo, debido a los recientes aumentos de precios, tenemos dificultades para pagar a nuestros proveedores de servicios y editores. Creemos sinceramente que el mundo será más habitable gracias a quienes leen libros y queremos que este servicio gratuito continúe. Si piensas como nosotros, haz una pequeña donación a la familia "BOOKPDF.ORG". Gracias por adelantado.
Qries

Descargar PDF

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

bookpdf.org | Cuál es mi IP Pública | Free Books PDF | PDF Kitap İndir | Telecharger Livre Gratuit PDF | PDF Kostenlose eBooks | Baixar Livros Grátis em PDF |